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Abstract—In a recent paper, we extended the hypercircle inequal-
ity for data error and applied our results to the problem of learning
the value of a function from inaccurate data in the reproducing kernel
Hilbert space. In the present paper we continue to present some other
recent results on this subject within this approach.
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I. INTRODUCTION

MOST of the previous studies on learning problem has
focused on finding the best function representation

from data. There are several methods that can be used to
determine a learned function which best describes given data
[2], [5], [6], [12]. Specifically, the well-known hypercircle
inequality has been applied to kernel- based learning when
data is known exactly [3], [4], [11]. Therefore, our previous
work has extended it to the circumstance for which data is
known within error [9]. In this paper, we continue to present
some other recent results on this subject. The first objective is
to consider the case that data error is measured with different
error tolerance. Specifically, we consider the case that data
error is measured with square loss. Moreover, we provide
two importance cases of the existence of the minimum of the
convex function which is used to obtain the best predictor.
The second objective is to report on further computational
experiment of learning the value of a function from partial
corruption data in the reproducing kernel Hilbert space .

Specifically, the theory of reproducing kernel Hilbert space
(RKHS) has recently emerged as a powerful framework for
the learning problem. A reproducing kernel Hilbert space is a
Hilbert space of functions with special properties [1]. It plays
an important role in approximation and regularization theory
as it allows us to write in a simple way the solution of learning
from empirical data problem. However, the choice of kernel
is critical to the success of many learning algorithms but it is
typically left to the user.

Given an input set T , we assume H to be a reproducing
kernel Hilbert space over the real numbers (RKHS). We recall
that an RKHS is a Hilbert space of real-valued functions
everywhere defined on T . Corresponding to Hilbert space H
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is a reproducing kernel K : T × T → R such that for all
t ∈ T and t ∈ H

f(t) = ⟨K(t; ·), f⟩

The Aronszajn’s theory of reproducing kernel Hilbert spaces
states that a function K : T × T −→ R is a reproducing
kernel if it is symmetric, that is K(s, t) = K(t, s), and positive
definite:

n∑
i,j=1

ajaiK(tj , ti) ≥ 0

for any n ∈ N and the choice of inputs T = {tj : j ∈ Nn} ⊆
T and a = (a1, ..., an) ∈ Rn where we use the notation
Nn = {1, 2, ..., n}. This useful theorem allows us to specify
a hypothesis space by choosing K.

Let d = (dj : j ∈ Nn) ∈ Rn be an inaccurate representation
of f(tj) where f : T → R is a functional representation in
H. Given t0 ∈ T , we want to estimate f(t0) knowing that

||f ||K ≤ 1

and the data error e := If − d is measured with some norm
on Rn. where we define

If := (f(ti) = ⟨f,Kti⟩ : i ∈ Nn).

As we state earlier, there are several methods that can be
used to determine a function which best describes given data.
Specifically, hypercircle inequality (Hi) has been applied to
kernel-based machine leaning. Unfortunately, Hi has only
applied to circumstances for which data is known exactly.
Recently, Kannika Khompurngson and Charles A. Micchelli
have extended it to inaccurate data and constructed a new
learning method [8] [9] [13] . In fact, the method is described
with a abstract Hilbert space setting. This framework is also
specific to the practically important case of reproducing kernel
Hilbert space.

According to the midpoint algorithm in our previous work,
the best estimator to learn f(t0) is the midpoint of the
uncertainty interval as follows

I(t0, d) = {f(t0) : ||f ||K ≤ 1, ||If − d|| ≤ ε}.

In addition, we showed that the best estimator still has the
form of a linear combination of the functions K(tj , ·), ti ∈ T.
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That is, we have that

f(t) =
∑
j∈Nn

cjK(tj , t), t ∈ T

for some real vector c = (cj : j ∈ Nn).

This paper is organized as follows. In Section II, we restrict
our attention to the study of hypercircle inequality for data
error when it has different empirical data error. Specifically,
we consider the case that data error is measured with square
loss and it has different empirical data error. Moreover, we
provide two importance cases of the existence of the minimum
of the convex function which is used to obtain the right
hand endpoint of the uncertainty interval and provide possible
iteration method to solve for such function. In Section III,
we briefly review the recent result on hypercircle inequality
for partial corruption data and we discuss some numerical
experiment on learning the value of a function from partial
corruption data in the reproducing kernel Hilbert space which
will appear in Section IV.

II. HYPERCIRCLE INEQUALITY FOR DATA ERROR WITH
DIFFERENT ERROR TOLERANCE

Let H be a Hilbert space over the real numbers with inner
product ⟨·, ·⟩. We choose a finite set of linearly independent
elements X = {xj : j ∈ Nn} in H. Consequently, let M be
the n−dimensional subspace of H spanned by the vectors in
X . That is, we have that

M := {
∑
i∈Nn

aixi : a ∈ Rn}.

Let Q : H → Rn be a linear operator H onto Rn which is
defined for any x ∈ H as

Q(x) =
(
⟨x, xj⟩ : j ∈ Nn

)
Since {xj : j ∈ Nn} is linearly independent, we obtain that
Q is onto Rn. That is, for all d ∈ Rn there is an x(d) ∈ H
such that

Q(x(d)) = d.

Consequently, the adjoint map QT : Rn → H is given by

QT (a) =
∑
j∈Nn

aixi

Therefore, the Gram matrix of the vector in X is given by

G =
(
⟨xj , xl⟩ : j, l ∈ Nn

)
=


⟨x1, x1⟩ ⟨x1, x2⟩ ... ⟨x1, xn⟩
⟨x2, x1⟩ ⟨x2, x2⟩ ... ⟨x2, xn⟩

...
...

...
...

⟨xn, x1⟩ ⟨xn, x2⟩ ... ⟨xn, xn⟩


= QQT

We remark that G is symmetric and positive definite and then
we obtain the vector x(d) as

x(d) := QT
(
G−1d

)
.

Before we review the results of Hypercircle inequality for
data error with different error tolerance, let us introduce the
following notations. We start with I ⊆ Nn which contains
m elements (m < n). We define | · |2 : Rm −→ R+ and
||| · |||2 : Rn−m −→ R+ as Euclidean norms on Rm and
Rn−m respectively.

For each e = (e1, ..., en) ∈ Rn, we use the notations

e
I
= (ei : i ∈ I) and e

J
= (ei : i ∈ J).

where we denote J = Nn\I . We assume that

E∞ = {e : e ∈ Rn, |e|∞ ≤ 1}

where we use | · |∞ as following

|e|∞ = max
{1
ε
|e

I
|2,

1

ε′
|||e

J
|||2

}
where ε, ε′ > 0. In this case, we define the hyperellipse in
the following way.

H(d|E∞) = {x : x ∈ B, |Q(x)− d|∞ ≤ 1} (1)

where B is a unite ball in H. That is, for each x ∈ H(d|E)

|(Q(x)− d)I |2 ≤ ε and |||(Q(x)− d)J |||2 ≤ ε′.

In the special case that ε = 0, we know that the hyperellipse
becomes to hypercircle [3] as shown below

H(d) = {x : x ∈ B,Qx = d}.

First, we point out that H(d|E∞) ̸= ∅ if

||x(d)||2 = (d,G−1d) ≤ 1.

Before we add some relations, let us introduce the notations
for the linear operators:

QI (x) :=
(
⟨xj , x⟩ : j ∈ I

)
∈ Rm

and
Q

J
(x) :=

(
⟨xj , x⟩ : j ∈ J

)
∈ Rn−m.

According to (1), we observe that

H(d|E∞) = H(d
I
|E

I
) ∩H(d

J
|E

J
) (2)

where we denote

H(d
I
|E

I
) =

{
x : x ∈ B, |Q

I
(x)− d

I
|2 ≤ ε

}
and

H(d
J
|E

J
) =

{
x : x ∈ B, |||Q

J
(x)− d

J
|||2 ≤ ε′

}
.

Alternatively, we consider here the following point of view.
Given x0 ∈ H , we want to estimate ⟨x, x0⟩ when it is
known that x ∈ H(d|E∞). We point out that H(d|E∞) is
a convex subset of H which is sequentially compact in the
weak topology on H [14].

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 10, Volume 7, 2013 881



Consequently, we obtain that the uncertainty interval

I(x0, d|E∞) :=
{
⟨x, x0⟩ : x ∈ H(d|E∞)

}
is a bounded and closed interval in R. Consequently, we define

m+(x0, d|E∞) = sup{⟨x, x0⟩ : x ∈ H(d|E∞)}

and

m−(x0, d|E∞) = inf{⟨x, x0⟩ : x ∈ H(d|E∞)}

respectively. Clearly, the best estimator is the midpoint of
the uncertainty interval and we use the following notation
m(x0, d|E∞).

Before we provide the duality formula for the right hand
endpoint, let us recall the conjugate norm of | · | which is
defined for all c ∈ Rn as

|c|∗ = max
w∈Rn

|w|≤1

(c, w).

These facts can be found in [7].

Moreover, if c ̸= 0 then there is a ĉ ∈ Rn such that |ĉ| = 1
and |c|∗ = (c, ĉ). Therefore, the conjugate norm | · |∞ is given,
for each e ∈ Rn, by

|e|1 = ε|eI |2 + ε′|||eJ |||2.

Theorem 1: If H(d|E∞) contains more than one point then

m+(x0, d|E∞) = min
c∈Rn

V2(c)

where the function

V2(c) := ||x0 −QT c||+ ε|c
I
|2 + ε′|||c

J
|||2 + (d, c)

for all c ∈ Rn.
Proof. see [9]

In additional, we provide the necessary and sufficient
condition on H(d|E∞) which provide that V2 achieves its
minimum at c∗ with c∗

I
̸= 0 and c∗

J
̸= 0. Let us recall a useful

theorem [9] before providing the proof of the following facts.

Theorem 2: If H(d
I
|E

I
) contains more than one point and

x0 /∈ MI :=
{
QT

I
(a) : a ∈ Rm

}
then
m+(x0, dI

|E
I
) =

min{||x0 −QT
I
a||+ ε|a|2 + (a, dI ) : a ∈ Rm}.

where we use the notation

m+(x0, dI
|E

I
) = max{⟨x, x0⟩ : x ∈ H(d

I
|E

I
)}.

Moreover, the minimum a∗ ∈ Rm is unique and

x+(dI
|E

I
) :=

x0 −QT
I
(a∗)

||x0 −QT
I
(a∗)||

satisfies

x+(dI |EI ) := argmin{⟨x, x0⟩ : x ∈ H(dI |EI )}.

Proof. see [9]

The following theorem shows the necessary and sufficient
condition on H(d|E∞) which provides that V2 achieves its
minimum at c∗ with c∗

J
= 0.

Theorem 3: If x0 /∈ M
I

and H(d
I
|E

I
) contains more than

one point then
c∗ = arg min{V2(c) : c ∈ Rn} with c∗

J
= 0

if and only if

x0 −QT
I
(a∗)

||x0 −QT
I
(a∗)||

∈ H(d|E∞)

Proof. We begin by proving
x0 −QT

I
(a∗)

||x0 −QT
I
(a∗)||

∈ H(d|E∞).

First, we observe that

c∗ = arg min{V2(c) : c ∈ Rn} with c∗
J
= 0

if and only if for all c ∈ Rn

||x0 −QT
I
(a∗)||++ε|a∗|∗ + (a∗, d

I
)

= min{||x0 −QT
I
(a)||+ ε|a|∗ + (a, d

I
) : a ∈ Rm}

≤ V2(c).

Since the function V is a convex this inequality holds if and
only if for all c ∈ Rn with c

I
= a∗ we obtain that

−ε′|||c
J
|||∗ − (c

J
, d

J
) ≤

inf
{ ||x0 −QT

I
(a∗)− λQT

J
(cJ )|| − ||x0 −QT

I
(a∗)||

λ
: λ > 0

}
which means for all c

J
∈ Rn−m that

−ε′|||c
J
|||∗ − (c

J
, d

J
) ≤ −

(Q
J
(x0 −QT

I
(a∗))

||x0 −QT
I
(a∗)||

, c
J

)
.

That is , we have that(Q
J
(x0 −QT

I
(a∗))

||x0 −QT
I
(a∗)||

− d
J
, c

J

)
≤ ε′|||c

J
|||∗.

Therefore, we have that

x0 −QT
I (a

∗)

||x0 −QT
I (a

∗)||
∈ H(d|E∞).

Conversely, for each x ∈ H(d|E∞) = H(d
I
|E

I
)∩H(d

J
|E

J
)

we observe that

⟨x, x0⟩ ≤ m+(x0, dI |EI ).

This means we have that

m+(x0, d|E∞) ≤ m+(x0, dI
|E

I
).

Since
x0 −QT

I
(a∗

I
)

||x0 −QT
I
(a∗

I
)||

∈ H(d|E∞) and

m+(x0, dI |EI ) = ||x0 −QT
I
(a∗)||+ ε|a∗|∗ + (a∗, dI ),

we obtain that

m+(x0, d|E∞) = ||x0 −QT
I
(a∗)||+ ε|a∗|2 + (a∗, dI )
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which completes the proof. �

Similarly, we also have the following theorem which
provides the different hypothesis which ensures that V2

achieves its minimum at c∗ with c∗
I
= 0.

Theorem 4: If H(dJ |EJ ) contains more than one point and

x0 /∈ MJ :=
{
QT

J
(b) : b ∈ Rn−m

}
then

c∗ = arg min{V2(c) : c ∈ Rn} with c∗
I
= 0

if and only if

x0 −QT
J
(b∗)

||x0 −QT
J
(b∗)||

∈ H(d|E∞)

where the vector b∗ ∈ Rn−m is the unique minimum of the
following function

b → ||x0 −QT
J
(b)||+ ε|||b|||2 + (b, d

I
)

and

x+(dJ |EJ ) :=
x0 −QT

J
(b∗)

||x0 −QT
I
(b∗)||

satisfies x+(dJ |EJ ) := argmin{⟨x, x0⟩ : x ∈ H(dJ |EJ )}.

Proof. This follows by the same method as in the proof of
Theorem 3.

The following theorem is the main result of this section.

Theorem 5: If H(d|E∞) contains more than one point,
x0 /∈ M and

x0 −QT
I
(a∗)

||x0 −QT
I
(a∗)||

,
x0 −QT

J
(b∗)

||x0 −QT
J
(b∗)||

/∈ H(d|E∞)

then
m+(x0, d) = min{V2(c) : c ∈ Rn}. (3)

Moreover, the minimum c∗ ∈ Rn is the unique solution of the
nonlinear equation

−Q(
x0 −QT c∗

||x0 −QT c∗||
) + w + d = 0 (4)

where the vector w ∈ Rn and

w =


εc∗

I

|c∗
I
|2
, if i ∈ I

ε′c∗
J

|||c∗
J
|||2

, if i ∈ J.

(5)

Proof. Let c∗ be the unique minimum of V2. Our hypothesis
guarantees that c∗

I
̸= 0 and c∗

J
̸= 0 and x0 ̸= QT c∗. Hence,

computing the gradient of V2 gives equation (4). �

In summary, to obtain the best predictor in hyperellipse
H(d|E∞) for the ⟨x, x0⟩ requires the solution of two nonlinear
optimization problems in (3). That is, we obtain that

m(x0, d|E∞) =
m+(x0, d|E∞)−m+(x0,−d|E∞)

2
.

A possible iterative method to solve equation (4) proceeds
in the following manner. We introduce the matrix D which is
an n × n diagonal matrix and we define the elements on the
diagonal by

dii =


ε

ρI

, if i ∈ I

ε′

ρ
J

, if i ∈ J.

(6)

where ρI := |c∗
I
|2 and ρJ := |||c∗

J
|||2 and rewrite the equation

(4) in the equivalent form

c∗ = (G+ τD)−1(Qx0 − τd).

where τ = ||x0 −QT c∗||.

We choose an initial vector c0 ̸= 0 and then successively
define ck, k ∈ N, by the formula

ck+1 = (G+ τkDk)−1(Qx0 − τkd) (7)

where τk := ||x0 − QT ck|| and the matrix Dk is an n × n
diagonal matrix and we define the elements on the diagonal
by

dkii =


ε

ρk
I

, if i ∈ I

ε′

ρk
J

, if i ∈ J.

(8)

where ρk
I
:= |ck

I
|2 and ρk

J
:= |||ck

J
|||2.

III. HYPERCIRCLE INEQUALITY FOR PARTIAL
CORRUPTION DATA WITH SQUARE LOSS

As we have described above, Hide has only applied to
circumstance for which all data are inaccurate data. In the
real situation, there are several types of data and an example
of this is the partial corruption data. Therefore, we have
extended the hypercircle inequality for partial corruption data
in a recent work [10].

In this section, we briefly review hypercircle inequality for
partial corruption data when data error is measured with square
loss and it has different error tolerance. We start with J1, J2 ⊆
J which contains m1,m2 elements (m1,m2 < n − m) and
m1 + m2 = n − m. We define | · |2 : Rm1 −→ R+ and
||| · |||2 : Rm2 −→ R+ as Euclidean norms on Rm1 and
Rm2 , respectively. For each e = (e1, ..., en) ∈ Rn, we use
the notations

e
J1

= (ei : i ∈ J1) and e
J2

= (ei : i ∈ J2).

We assume that

E∞ = {e : e ∈ Rn, eI = 0, |e|∞ ≤ 1}
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where we define | · |∞ : Rn−m −→ R+ as follows.

|e|∞ = max
{1
ε
|e

J1
|2,

1

ε′
|||e

J2
|||2

}
.

where ε, ε′ > 0.

Similarly, let us introduce the notations for the linear
operators.

QJ1
(x) :=

(
⟨xj , x⟩ : j ∈ J1

)
∈ Rm1

and
Q

J2
(x) :=

(
⟨xj , x⟩ : j ∈ J2

)
∈ Rm2 .

For each d ∈ Rn, we define the partial hyperellipse as
follows.

H(d|E∞) :=
{
x : x ∈ H, ||x|| ≤ 1, Q(x)− d ∈ E∞

}
(9)

That is, for each x ∈ H(d|E∞) we have the following
information from data

(Q(x)− d))I = 0

|(Q(x)− d)J1
|2 ≤ ε and |||(Q(x)− d)J2

|||2 ≤ ε′.

Clearly, our data set contains both accurate and inaccurate
data and there is known different error tolerance of data error.

According to the definition of hyperellipses and
hypercircles, we observe that

H(d|E∞) = H(d
I
) ∩H(d

J
|E∞) (10)

where we denote the hypercircle with the constant d
I

as

H(d
I
) =

{
x : ||x|| ≤ 1, Q

I
(x) = d

I

}
and the hyperellipse with the constant d

J
as

H(d
J
|E∞) =

{
x : ||x|| ≤ 1, Q

J
(x)− d

J
∈ E∞

}
where E∞ = {e : e ∈ Rn−m, |e|∞ ≤ 1} and we use | · |∞ :
Rn−m → R+ as following

|e|∞ = max
{1
ε
|e

J1
|2,

1

ε′
|||e

J2
|||2

}
.

Indeed, we obtain that

H(d|E∞) = H(d
I
) ∩H(d

I
|E

J1
) ∩H(d

J
|E

J2
)

where we denote the the hyperellipse with the constant d
J1

and d
J2

as

H(d
J1
|E

J1
) =

{
x : ||x|| ≤ 1, |Q

J1
(x)− d

J1
| ≤ ε

}
.

and

H(d
J2
|E

J1
) =

{
x : ||x|| ≤ 1, |||Q

J2
(x)− d

J2
||| ≤ ε′

}
respectively.

Next, let us add some remarks when H(d|E∞) ̸= ∅.
According to Qx(d) = d, we obtain that if

||x(d)||2 = (d,G−1d) ≤ 1

then H(d|E∞) ̸= ∅.

Given x0 ∈ H , we want to estimate ⟨x, x0⟩ when it is
known that x ∈ H(d|E∞). That is, our data set contains both
accurate and inaccurate data. Again, we point out that the
partial hyperellipse is convex subset of H which is se-
quentially compact in the weak topology on H. Consequently,
we obtain that the uncertainty interval

I(x0, d|E∞) :=
{
⟨x, x0⟩ : x ∈ H(d|E∞)

}
is a bounded and closed interval on R. Therefore, we use the
following the notation for the right and left hand endpoints

m+(x0, d|E∞) = sup{⟨x, x0⟩ : x ∈ H(d|E∞)}

and

m−(x0, d|E∞) = inf{⟨x, x0⟩ : x ∈ H(d|E∞)},

respectively. According to the midpoint algorithm again, the
midpoint, m(x0, d|E∞), of the uncertainty interval is the best
estimator.

According to the previous section, we only need to evaluate
the two numbers m±(x0, d|E∞) and compute the midpoint
m(x0, d|E∞). Therefore, let us provide the following facts
before we show the duality formula for the right hand end-
point. We found that the conjugate norm |·|∞ : Rn−m −→ R+

is also given for each e ∈ Rn−m by

|e|1 = ε|e
J1
|2 + ε′|||e

J2
|||2.

Theorem 6: If H(d|E∞) contains more than one point then

m+(x0, d|E∞) = min
c∈Rn

V2(c)

where the function

V2(c) := ||x0 −QT c||+ ε|cJ1
|2 + ε′|||cJ2

|||2 + (d, c)

for all c ∈ Rn.
Proof. see [9].

In this section, we also provide the necessary and sufficient
condition on H(d|E∞) which provides that V2 achieves its
minimum at c∗ with c∗

J1
̸= 0 and c∗

J2
̸= 0.

To this end, let us introduce the following vectors

x+(dJ
|E

J1
) :=

x0 −QT
J1
(a∗)

||x0 −QT
J1
(a∗)||

and

x+(dJ |EJ2
) :=

x0 −QT
J2
(b∗)

||x0 −QT
J2
(b∗)||

.

These vectors satisfies

x+(dJ1
|EJ1

) := argmin{⟨x, x0⟩ : x ∈ H(dJ1
|EJ1

)}

and

x+(dJ2
|E

J2
) := argmin{⟨x, x0⟩ : x ∈ H(d

J2
|E

J2
)}.

Now we are ready to state the theorem.
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Theorem 7: If H(d|E∞) contains more than one point,
x0 /∈ M and

x0 −QT
I
(a∗)

||x0 −QT
I
(a∗)||

,
x0 −QT

J
(b∗)

||x0 −QT
J
(b∗)||

/∈ H(d|E∞)

then
m+(x0, d) = min{V2(c) : c ∈ Rn}. (11)

Moreover, the minimum c∗ ∈ Rn is the unique solution of the
nonlinear equation

−Q(
x0 −QT c∗

||x0 −QT c∗||
) + w + d = 0 (12)

where the vector w ∈ Rn and

w =



0, if i ∈ I

εc∗
J1

|c∗
J1
|2
, if i ∈ J1

ε′c∗
J2

|||c∗
J2
|||2

, if i ∈ J2.

(13)

Proof. This follows by the same method as in the proof of
Theorem 5. �

A possible iterative method to solve equation (12) proceeds
in the following manner. We introduce the matrix D which
is an n × n diagonal matrix and we define the elements on
diagonal by

dii =



0, if i ∈ I

ε

ρ
J1

, if i ∈ J1

ε′

ρ
J2

, if i ∈ J2.

(14)

where ρ
J1

:= |c∗
J1
|2 and ρ

J2
:= |||c∗

J2
|||2 and rewrite the

equation (12) in the equivalent form

c∗ = (G+ τD)−1(Qx0 − τd).

where τ = ||x0 −QT c∗||.

We choose an initial vector c0 ̸= 0 and then successively
define ck, k ∈ N, by the formula

ck+1 = (G+ τkDk)−1(Qx0 − τkd) (15)

where τk := ||x0 − QT ck|| and the matrix Dk is an n × n
diagonal matrix and we define the elements on the diagonal
by

dkii =



0, if i ∈ I

ε

ρk
J1

, if i ∈ J1

ε′

ρk
J2

, if i ∈ J2.

(16)

where ρk
J1

:= |ck
J1
|2 and ρk

J2
:= |||ck

J2
|||2.

IV. NUMERICAL EXPERIMENTS

In this Section, we shall report some results from a
numerical experiment on learning the value of a function
in RKHS from partial corruption data by the midpoint
algorithm.

The computation below is organized in the following way.
Let H be the RKHS which contains the real-valued function
on some input space T . Given t0 ∈ T and {(tj , dj) : j ∈
Nn} ⊆ T × R, we want to estimate f(t0) knowing that

||f ||K ≤ δ and f ∈ H(d|E∞).

Therefore, the vectors {xj : j ∈ Nn} appearing in Section
2 are identified with the functions

{Ktj : j ∈ Nn}

where Ktj (t) := K(t, tj); t ∈ T and the vector x0 with the
function Kt0 .

Therefore, the linear operator Q : H → Rn becomes for
any f ∈ H ,

Q(f) =
(
f(tj) : j ∈ Nn

)
Consequently, the adjoint map QT : Rn → H is given by

QT (a) =
∑
j∈Nn

aiK(t, tj)

The Gram matrix of the function {Ktj : j ∈ Nn} is given as

G =
(
K(tl, tj) : j, l ∈ Nn

)
=


K(t1, t1) K(t1, t2) ... K(t1, tn)
K(t2, t1) K(t2, t2) ... K(t2, tn)

...
...

...
...

K(tn, t1) K(tn, t2) ... K(tn, tn)


We choose a exact function g ∈ H and randomly choose a

vector e representing the ”noise” and define

d = g(tj) + e.

Next, we choose the I which is the subset of Nn. Conse-
quently, we get that J = Nn \ I. We then choose J1, J2 ⊆ J
which contains m1,m2 elements (m1,m2 < n − m) and
m1 + m2 = n − m. Therefore, we obtain the partial
hyperellipse as in the following

H(d|δE∞) :=
{
f : f ∈ H, ||f ||K ≤ δ, Q(f)− d ∈ E∞

}
where δ is any positive number. That is, for each f ∈
H(d|E∞) we have the following information from data

f(tj)− dj = 0 for all j ∈ I

|(f(tj)− d)
J1
|2 ≤ ε and |||(f(tj)− d)

J2
|||2 ≤ ε′.

First, we need to evaluate the value of δ such that
H(d|δE∞) ̸= ∅. We then consider the norm of the vector
x(d)

||x(d)||2 = (d,G−1d)
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where the vector

x(d) : fd(t) =
n∑

i=1

aiK(t, ti)

and a = G−1d. Therefore we obtain that if we choose the
value of δ ≥

√
||x(d)|| then H(d|E∞) ̸= ∅.

With no effort at all, the observations we made so far
extend to the case that the unit ball B is replaced by δB.
Consequently, the duality formula becomes

V2(c) = δ

√
K(t0, t0)− 2

∑
j∈Nn

cjK(t0, tj) +
∑

i,j∈Nn

cicjK(ti, tj)

+ε

√∑
j∈J1

c2j + ε′
√∑

j∈J2

c2j +
∑
j∈Nn

cjdj .

According to the previous section, we only need to evaluate
the two numbers m+(x0,±d|δE∞) and compute the midpoint

m(x0, d|δE∞) =
m+(x0, d|δE∞)−m+(x0,−d|δE∞)

2
.

For the computation of V2 we use the program fminunc in
the optimization toolbox of Matlab 7.3.0.

The algorithm use to find the value of a function by using
the the midpoint estimator has shown below.

The Algorithm

Step1 : Set d = g(tj) + e and choose t0

Step1 : Calcuate ||fd||2 = (d,G−1d)

Choose δ ≥ ||fd|| =
√
(d,G−1d).

Step4 : Find m+(t0,±d|δE∞), we use the
program fminunc in the optimization
toolbox of MATLAB 7.3.0.

m+(t0,±d|δE∞) = min
c∈Rn

δ||Kt0 −QT c||+ ε|cJ1
|2

+ε′|||c
J2
|||2 ± (c, d).

Step5 : Calculate m(t0, d|δE∞) by the formula

m(t0, d|δE∞) =
1

2

(
m+(t0, d|δE∞)−m+(t0,−d|δE∞)

)

Example We choose the gaussian kernel on R.
That is,

K(t, s) := e−
(t−s)2

10

where t, s ∈ R.

and the exact function

g(t) := 4e−
(t−7.5)2

10 + 2e−
(t−2.5)2

10

−0.5e−
(t+2.5)2

10 + 5e−
(t+7.5)2

10 .
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Exact function
Given data
Approximation point

Fig. 1. Graph of the exact function for Gaussian kernel on R and given
points which is known within different error tolerance.

We choose t0 = 0 and generate a training set of twenty
points {(tj , dj) : j ∈ Nn} ⊆ R × R obtained by sampling g
with noise. That is, we define

d = g(tj) + e.

We want to estimate the value of f(0) when we know
information from data as following

f(tj)− dj = 0 for all j ∈ {6, 7, ..., 15}

|(f(tj)− d)
J1
|2 ≤ 0.3 and |||(f(tj)− d)

J2
|||2 ≤ 0.5.

where J1 = {1, 2, ..., 5} and J2 = {16, 17, ..., 20}.

First, we need to evaluate the value of δ such that
H(d|E∞) ̸= ∅. We then consider the norm of the vector x(d)

fd(t) =
n∑

i=1

aie
− (t−ti)

2

10

and a = G−1d. Therefore we obtain that if we choose the
value of δ ≥ 7.6408 then H(d|δE∞) ̸= ∅.

Consequently, the duality formula to obtain the right and
left hand endpoinst become

V±
2 (c) = δ

√
1− 2

∑
j∈N20

cje
−

(tj)
2

10 +
∑

i,j∈N20

cicje
−

(ti−tj)
2

10

+ 0.3

√∑
j∈J1

c2j + 0.5

√∑
j∈J2

c2j ±
∑

j∈N20

cjdj .
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That is, we compute

v± := min{V±
2 (c) : c ∈ Rn}

and then our midpoint estimator is given by v+−v−
2 . The

results of the computation is indicated in Figure 2 while the
exact value g(0) = 0.7993.
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Fig. 2. Midpoint estimator from Gaussian kernel on R

V. CONCLUSION

In this paper we continue our study on Hide. Specifically,
we considered the case that data error is measured with
square loss and has different empirical data error. Moreover,
we provided two importance cases of the existence of the
minimum of the convex functions and also provided possible
iteration method to solve for function in equation (4) which
is useful for practical. In Section III, we also provided the
importance case of the existence of the minimum of the convex
functions which is used to obtain the right hand endpoint for
the case of partial corruption data. In addition, we reported
some numerical experiment on learning the value of a function
from partial corruption data in the reproducing kernel Hilbert
space.
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